
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

About Download Documentation Weblog Community Source

4. Recipes
4.1 Introduction
At this point, you’ve seen a few Capistrano recipes. You’ve been exposed to all three of the

building blocks of recipes: variables, roles, and tasks. In this chapter, we’ll take a closer

look at each of these components and understand better what they can do for us.

4.2 Variables
Capistrano variables are set using the set keyword. Once set, you can access them in your

recipes by name:

Using variables [ruby]

1
2

(Note that because Capistrano recipe files are really just specialized Ruby scripts, you can

do most anything in a recipe file that you would be able to do in a full-fledged Ruby script.)

You can set any variables you want. This allows you to create (for instance) configurable

tasks that you can then share with others—you just define your tasks to use certain

variables, and then others can set those variables in their own scripts. The subversion and

darcs scm modules use this approach, allowing you to set (respectively) the :svn and

:darcs variables to define where the executables are on the remote hosts (if they aren’t in

the default path).

Capistrano also defines several pre-defined variables internally. Some of the more

commonly used of these variables are:

Variable Default Description

application (required) The name of your application. Used to build other

values, like the deployment directory.

repository (required) The location of your code’s scm repository.

gateway nil The address of the server to use as a gateway. If

given, all other connections will be tunneled through

this server.

user (current user) The name of the user to use when logging into the

remote host(s).

password (prompted) The password to use for logging into the remote

host(s). Probably not a good idea to set this in

recipe files, for various reasons.

deploy_to ”/u/apps/#{application}” The root of the directory tree on the remote host(s)

that the application should be deployed to.

version_dir “releases” The directory under deploy_to that should contain

each deployed revision.

current_dir “current” The name to use (relative to deploy_to) for the

symlink that points at the current release.

shared_dir “shared” The name of the directory under deploy_to that will

contain directories and files to be shared between all

releases.

revision (latest revision) This specifies the revision you want to check out on

the remote machines. (Because the definition of a

“revision” differs from SCM to SCM, the actual

format of this variable is rather free form.)

scm :subversion The source control module to use. Currently

supported modules are :subversion, :cvs, and

:darcs.

svn (path) The location on the remote host(s) of the svn

executable. This is useful if subversion is installed in

a non-standard path on the servers.

checkout "co" The subversion operation to use when checking out

the code on the remote host. This can be set to

"export" if you would rather do an svn export

instead of co.

cvs (path) The location on the remote host(s) of the cvs

executable. This is useful if CVS is installed in a non-

standard path on the servers.

darcs (path) The location on the remote host(s) of the darcs

executable. This is useful if darcs is installed in a

non-standard path on the servers.

ssh_options Hash.new This is a hash of additional options that you would

like passed to the SSH connection routine. This lets

you set (among other things) a non-standard port to

connect on (ssh_options[:port] = 2345).

use_sudo true Whether or not tasks that can use sudo, ought to

use sudo. In a shared environment, this is typically

not desirable (or possible), and in that case you

should set this variable to false, which will cause

those tasks to simply try to run the command

directly.

One last trick you can use with variables. Sometimes you want a variable to be evaluated

lazily, like deploy_to is. deploy_to is set at the very beginning, by Capistrano, to

"/u/apps/#{application}", but at this point the application variable has not been set.

So what Capistrano does is set the deploy_to variable to a Proc instance, which gets

evaluated the first time deploy_to is referenced:

Defining a variable to be lazily evaluated [ruby]

Any time you set the value of a variable to be a block (or a Proc instance), the first time

that variable is accessed the block will be executed, and the return value cached and

returned.

4.3 Roles
Roles, as we have seen, allow you to define named subsets of your production servers. You

can then define tasks that are only executed on these specific subsets.

To define a new role, you use the role keyword, followed by a comma-delimited list of

server names that belong in that role. Servers can be put in multiple roles (such as when

you have one server that hosts everything).

Defining roles [ruby]

1
2
3
4

You can define as many servers in as many roles as you want. You can even use any name

you want for the roles, but Capistrano’s standard roles are written to look for three in

particular web, app and db.

If the last parameter to role is a Hash, the values will be used to further specialize the

servers in that list, creating (in effect) sub-roles:

Defining roles [ruby]

1
2

In the above example, there are two servers in the db role, so any task associated with the

db role will be executed on both of them. However, one of the servers

(master.capistrano.com) is also given the more specific information of :primary => true

(meaning, in this case, that this server is the primary database server). Tasks may then be

defined that run only on servers in the db role, and with the :primary => true setting.

4.4 Tasks
Tasks are like methods. You create them (using the task keyword), give them a name and

then define what they ought to do. By default, a task is associated with all servers, unless

you explicitly specify the subset of servers to be used.

A task may invoke other tasks, simply by naming them. In this sense, a task really is like a

method, because it can be invoked anywhere:

Defining tasks [ruby]

1
2
3
4
5
6
7
8

The above example creates two tasks, hello_world and some_task. Neither task specifies

a role, which means that both are potentially associated with all servers. However, let’s look

at what this means in practice.

If I execute the some_task task, it will print calling hello_world... to the terminal, and

will then invoke hello_world. So far, so good—no servers have been touched, and all

activity has been on the local host.

However, when hello_world is invoked, it calls run. All run does is attempt to execute the

given command on all associated remote hosts. (We’ll talk more later about the available

helper methods, of which run is the most commonly used.) This means that as soon as run

is invoked, Capistrano inspects the current task and determines what roles are active, and

then determines which servers those roles map to. If no connection has been made a

server yet, the connection is established and cached, and then the command is executed in

parallel. This means that no connections are made to the remote hosts until they are

actually needed.

In the above example, then, no connection is established to any server until hello_world

is invoked, and then connections are made to all defined servers in all roles. If we only

wanted the servers in the db and app roles to be used for that task, we could specify that:

Specifying roles [ruby]

1
2
3

If you only want a single role to be used, you can specify it directly, without putting it in an

array (i.e., :roles => :db).

As was hinted at earlier in this manual, you can also specify extra information when adding

a server to a role:

Extra role information [ruby]

1
2

In the above example, the “master” server has the extra information :primary => true,

while the “slave” server does not. Both are in the db role, but you can define a task that

will only execute on the “master” server like this:

Using extra information [ruby]

1
2
3

In this case, all servers in the db role, with :primary => true in their extra information

hash, will be targeted for the hello_action task.

It should also be mentioned that tasks have complete access to all configuration variables:

Accessing configuration variables [ruby]

1
2
3
4
5
6
7

4.5 Extending Tasks
Sometimes, you want to attach some logic to an existing task, either to execute before or

after the task itself. For instance, the standard setup task builds out the required

directories on each of your servers, but what if you have some other specific setup tasks

you’d like done at the same time?

Not a problem. Before Capistrano executes a task, it looks for any other task named

before_XYZ (where XYZ is the name of the task to be executed). If it finds such a task, it

executes it first. Likewise, when it finishes executing a task successfully, it will look for (and

execute) after_XYZ.

So, let’s say you want to also create a shared/cache directory on each of your servers:

Defining an "after" task [ruby]

1
2
3

Notice that you can alsp specify roles and so forth forth these before and after tasks, so

even though setup (in this example) executes on all servers, you can have these extra

set :application, "flipper"
puts "The application name is #{application}"

 set(:deploy_to) { "/u/apps/#{application}" }

 role :web, "www.capistrano.com"
 role :app, "app1.capistrano.com", "app2.capistrano.com"
 role :db, "app2.capistrano.com"
 role :spare, "genghis.capistrano.com"

 role :db, "master.capistrano.com", :primary => true
 role :db, "slave.capistrano.com"

 task :hello_world do
 run "echo Hello, $HOSTNAME"
 end

 task :some_task do
 puts "calling hello_world..."
 hello_world
 end

 task :hello_world, :roles => [:db, :app] do
 run "echo Hello, $HOSTNAME"
 end

 role :db, "master.capistrano.com", :primary => true
 role :db, "slave.capistrano.com"

 task :hello_world, :roles => :db, :only => { :primary => true } do
 run "echo Hello, $HOSTNAME"
 end

 task :hello_world do
 puts "The application is #{application}."
 puts "The repository is #{repository}."
 puts "Currently using #{scm} as the source control system."
 puts "Deploying to #{deploy_to}."
 # etc.
 end

 task :after_setup, :roles => [:web, :app] do
 run "mkdir -m 777 #{shared_dir}/cache"
 end

