
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

« previous chapter next chapter »

About Download Documentation Weblog Community Source

2. Quick Start
2.1 Getting started
An example is worth a lot. This chapter will describe very simple one-box environment, and

demonstrate how to use Capistrano to manage it. This will introduce some of the basic

concepts, which we can build on in the next chapter.

The production environment is this: a single production machine (we’ll call it

“simple.capistrano.com”), running MySQL 4.x, using FastCGI and Apache. The application

uses the lateset bleeding-edge version of Rails.

This imaginary application (we’ll call it “Flipper”) is stored in a subversion repository at

http://svn.capistrano.com/flipper/trunk.

One disclaimer: the default Capistrano tasks assume a distributed environment in which the

FastCGI processes are managed separately from the web server. For the sake of simplicity,

we’ll assume Apache is managing the FastCGI processes for this example, and delve into

the more complex setup in the next chapter.

2.2 Installing Capistrano
Capistrano is most easily installed as a gem. Just do gem install capistrano and you’re

good to go.

Once you have Capistrano installed, you should be able to invoke the cap utility. To ensure

it is installed correctly, just execute cap -h. You should see a help screen. (If you don’t,

Capistrano was either not installed, or not installed correctly.)

Now that Capistrano is installed, you can “capistranize” your rails application in one simple

command:

The /path/to/my/app is the location of the base directory of your application—it’s “rails

root”. MyApplicationName is the name of your application. (You can change this later,

easily, so if you don’t know what to put here right now, just put “application”.)

And now you should be set to get started!

2.3 Deployment Recipe
The deployment recipe is to Capistrano, as the Rakefile is to Rake. It describes the tasks

that are to be performed, and the subsets of servers they are to be performed on. By

default, it is called deploy.rb and resides in the config directory.

When developing a deployment recipe, it helps to have a template to work from. Rails

provides a “deployment” generator that creates a default deployment recipe in the

config/deploy.rb file, which you can tailor to your specific needs.

Our deployment script starts by setting the two required variables:

Required variables for deployment recipes [ruby]

1
2

The :application variable names the application being deployed. This is used for various

things, but most notably to describe the path being deployed to on the remote server.

The :repository variable is the location of the (subversion, in this case) repository that

stores our code. (Note that, for subversion, you cannot use file:// repositories with

Capistrano.)

Once you’ve defined the application and repository, all you need to define further is the list

of roles (and the servers in each role). In our case, we only have one server, so that server

is going to be pulling multiple duties:

Defining our roles [ruby]

1
2
3

You can define whatever roles you want, but the default Capistrano tasks look for those

three: :app, :web, and :db. The :app role describes which servers are acting as the

application servers (the servers running the FastCGI instances). The :web role describes the

servers running Apache, and the :db role describes the servers running your database(s).

In our case, they’re all the same box.

That’s it! Your recipe is ready to use. The default tasks provided by Capistrano are sufficient

for what we need to do right now, but we’ll demonstrate doing some custom tasks shortly.

2.4 Setup
Okay, now that we’ve got a basic deployment recipe going, we can try it out by executing

the setup task. This task will set up the basic deployment directory structure on our

production box for us.

The deployment directory structure is:

Deployment directory structure [chart]

The [deploy_to] represents the root of your deployment path. By default, Capistrano uses

"/u/apps/#{application}" as the root of the deployment path, but you can specify

whatever root you want via the :deploy_to variable in your recipe file:

Custom deployment root [ruby]

Beneath the deployment root are two other directories, releases and shared. The

releases directory contains one subdirectory for every released version of your software.

Each subdirectory is named for the time (in Universal Standard Time) at which it was

deployed.

The shared directory contains directories and files that should be shared between multiple

releases, like log files and static system HTML files (like a “down for maintenance page”).

Finally, the deployment root contains a symlink called current that points the current

release.

It isn’t necessary to build all these directories yourself. You can use the default setup

Capistrano task to do it for you. Just type the following:

Executing the setup task [shell]

This will prompt you for your server’s password. (If you don’t want the password to echo to

the screen as you type it, be sure you have the termios gem installed—only guaranteed to

work in *nix environments.)

After you enter the password, Capistrano will go out to your server and build the necessary

directories, chmod-ing them as necessary.

Nifty, huh? But this is only the beginning…

2.5 Apache Configuration
We should take a moment here and make sure we’ve got Apache configured for our

application. Anticipating only a moderate load (at least initially), we figure five FastCGI

instances should be enough for getting on with. The following snippets of Apache

configuration should be sufficient to configure our web server for that:

Configuration snippets [apache]

Of course, we’ll also need to configure vhosts as appropriate using (as shown above)

/u/apps/flipper/current as the RAILS_ROOT of our application.

2.6 Deploying
Okay, let’s look at writing our first custom task. We can’t use Capistrano’s default

deployment task because it assumes we are using a distributed set up. As a result, it will

try to restart the application in a way incompatible with our single-server setup.

To make it work, we’ll just add the following task to our deploy.rb file:

Redefining the restart task [ruby]

1
2
3
4

The first line gives us a description of the task we are defining. (You can see all available

deployment tasks, and their descriptions, by typing rake show_deploy_tasks.) The next

line defines a task named restart, that only applies to servers in the app role. When

invoked, it will execute apachectl graceful on all app servers, via sudo.

Once you’ve got that task defined, we can try it out. Just type:

Deploy the application [shell]

This will (again) prompt for your password for the remote server, and then will do the

following things:

Checkout the latest revision of your application to the releases directory

Update (or create) the current symlink so it points to this new revision

Invoke the restart task that we just redefined

The checkout/symlink process is roughly atomic, so if any part of those two tasks fail, the

symlink will be restored to the prior revision and the newly checked out revision deleted.

Note that by default, Capistrano checks out the latest revision of your code. If you ever

want to checkout a revision other than the latest, you can specify the revision you want via

the :revision variable (see chapter 4 for more about variables).

2.7 Rolling back a release
So, let’s assume we’ve gone through this process a few times, and everything has gone

well. Suddenly, though, we push a release into production that is a lemon—things start

going crazy and we need to get it out fast.

Simple. Just type:

Rolling back a release from production [shell]

This will go to the remote server, update the current symlink to point to the previous

revision, delete the bad revision from off of the server, and then restart the web server.

 cap --apply-to /path/to/my/app MyApplicationName

set :application, "flipper"
set :repository, "http://svn.capistrano.com/flipper/trunk"

role :app, "simple.capistrano.com"
role :web, "simple.capistrano.com"
role :db, "simple.capistrano.com"

[deploy_to]
 +- releases
 | +- 20050725121411
 | +- 20050801090107
 | +- 20050802231414
 | ...
 | +- 20050824141402
 | | +- Rakefile
 | | | app
 | | | config
 | | | db
 | | | lib
 | | | log --> [deploy_to]/shared/log
 | | | public
 | | | +- ...
 | | | system --> [deploy_to]/shared/system
 | | | ...
 | | | script
 | | | test
 | | | vendor
 |
 +- shared
 | +- log
 | +- system
 |
 + current --> [deploy_to]/releases/20050824141402

set :deploy_to, "/var/www/flipper"

rake remote:exec ACTION=setup

 ...
 LoadModule fastcgi_module libexec/apache/mod_fastcgi.so
 ...
 AddModule mod_fastcgi.c
 ...
 AddHandler fastcgi-script fcgi
 ...
 FastCgiIpcDir /tmp/fcgi_ipc
 FastCgiServer /u/apps/flipper/current/public/dispatch.fcgi -initial-env RAILS_ENV=production -processes 5 -idle-timeout 600
 ...

 desc "Restart the web server"
 task :restart, :roles => :app do
 sudo "apachectl graceful"
 end

 rake deploy

 rake rollback

