
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

About Download Documentation Weblog Community Source

6. Creating Tasks
6.1 Overview
Creating new tasks is easy. You might even be surprised how easy it is to do fairly complex

things. After all, this is all just Ruby code, and anything you can do in Ruby, you can do in a

Capistrano task.

There are several methods available to tasks to make your life (and tasks) easier. This

chapter will introduce each of them, and show how they can be used.

6.2 run
The run helper takes a single string identifying the command to execute. This command can

be any valid shell command, or even multiple commands chained together by &&. This

command (or commands) will be executed on all servers associated with the current task,

in parallel. If the executed command fails (returns non-zero) on any server, run will raise

an exception.

Example of using the run helper [ruby]

1
2
3
4
5

Additionally, you can pass a block to run. The block will be invoked every time the

command produces output (stderr or stdout). The block should accept three parameters:

the channel (an object representing the underlying SSH channel being used to communicate

with the server), the stream (a symbol, either :err or :out), and the data itself.

The channel object allows you to send data back to the process, on it’s stdin stream, by

calling send_data on the channel. Also, you can access the name of the host that produced

the output via channel[:host].

Example of capturing output [ruby]

1
2
3
4
5
6

By default, the run command simply echos all output from all hosts to the terminal.

6.3 sudo
The sudo command is exactly like the run command, except that it executes the command

via sudo. This assumes that sudo is in a standard path on the remote host, and that the

user you used to log into the server has permission to use sudo for the requested

operation.

If a password is requested, the password used to log into the server will be used.

sudo example [ruby]

Just like run, sudo can take a block to process output as well.

6.4 put
The put helper let’s you transfer data from the local host to a file on the remote host. In

this case, though, the file is transferred to all associated servers via a single call to put. If

Net::SFTP is available, it will be used to transfer the files, otherwise a less-robust method is

used (pipe to cat).

To use put, just pass two parameters—a string containing the data to transfer, and the

name of the file to receive the data on each remote host. Optionally, you can also specify

:mode => value to set the mode of the value. (Note, this will overwrite the file on the

remote host!)

Using put [ruby]

1
2
3

Also note that unless Net::SFTP is available, put cannot be used to (reliably) transfer binary

files.

6.5 delete
The delete command is just a convenience for executing rm via run. It just attempts to do

an rm -f (note the -f! Use with caution!) on the remote server(s), for the named file. To

do a recursive delete, pass :recursive => true:

Demonstrating delete [ruby]

6.6 render
The render command is kind of an oddball, since it doesn’t change the remote servers at

all. It basically just provides an interface for easily rendering ERb templates and returning

the result.

So, how does this belong in something like Capistrano?

Consider the disable_web task. It dynamically generates and stores a maintenance.html

file on each web server, allowing you to specify a few different components of the

presentation (the reason for the downtime, and the estimated end time).

The render command makes this easy. You just have a maintenance.rhtml template that

you pass to render, along with the variables you want to use in the render, and then pass

the result to put.

You can use this for all sorts of things—dynamically constructing your database.yml, or

customizing a script, or whatever you can think of.

If you pass a string to render, it is interpreted as the name of a template file to render.

The name need not be suffixed with ”.rhtml”—if a file exists with the given name and

”.rhtml” appended to it, that file will be used. The given file must exist relative either to the

current directory, or the capistrano/recipes/templates directory (for access to standard

template files).

Rendering a file [ruby]

The above will render the file “maintenance.rhtml” (or “maintenance”, if

“maintenance.rhtml” does not exist) and return the result as a string. You can also specify

a hash of variables to use for the render (these will be treated as local variables within the

scope of the render):

Rendering a file with variables [ruby]

If you don’t want to render a file, but instead have a string containing an ERb template that

you want to render, you can do it like this:

Rendering a string [ruby]

6.7 transaction
The transaction helper lets you execute a series of other tasks with some (limited) ability

to roll back their effects if any of them fail. What it really does is execute the attached

block, and if an exception is raised it looks to see what tasks have been executed, and then

executes the on_rollback handler (see below) for each one (if one exists).

This means that the rollback is only as accurate as the on_rollback handlers for the

associated tasks. And not all tasks specify on_rollback.

Using a transaction [ruby]

1
2
3
4
5
6

Of the standard tasks, the following define an on_rollback handler:

disable_web

symlink

update_code

6.8 on_rollback
The on_rollback helper allows a task to specify a callback to use if that task raises an

exception when invoked inside of a transaction (see transaction, above). It accepts no

parameters, only a block:

Specifying an on_rollback handler [ruby]

Note that the on_rollback clause is only executed when an exception is raised, when the

task is being executed inside the scope of a transaction call. If the task raises an

exception when no transaction is active, the on_rollback handler is not invoked.

 run <<-CMD
 if [[-d #{release_path}/status.txt]]; then
 cat #{release_path}/status.txt
 fi
 CMD

 run "sudo ls -la" do |channel, stream, data|
 if data =~ /^Password:/
 logger.info "#{channel[:host]} asked for password"
 channel.send_data "mypass\n"
 end
 end

 sudo "apachectl graceful"

 put(File.read('templates/database.yml'),
 "#{release_path}/config/database.yml",
 :mode => 0444)

 delete "#{release_path}/certs", :recursive => true

 render "maintenance"

 render "maintenance", :deadline => ENV['UNTIL'],
 :reason => ENV['REASON']

 render :template => "Hello <%= target %>", :target => "world"

 task :push_latest do
 transaction do
 update_code
 symlink
 end
 end

 task :update_code do
 on_rollback { delete release_path, :recursive => true }
 ...
 end

