Y £ Ruby on Rails

: Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

Chapters /7. Extending Capistrano

1. Introduction

Ahat s Capistrano? 7.1 Task Libraries

What can it do?

What_assumptions does it Eventually, you're going to find yourself with a task or two that you’ve written, that you
make?

want to use in other applications. Or perhaps you showed it to a friend and they wanted to

2. Quick Start use it themselves.
Getting started

Installing Capistrano Capistrano provides a way of loading “task libraries” that have been installed in the Ruby

Deployment Recipe load path (such as via rubygems).

Setup

Apache Configuration 7.2 Writing a Task Library
Deploying
Rolling back a release

As the author of a task library, you simply write your tasks as you normally would, but then
you wrap them in a block so that Capistrano can load them into the currently executing

3. A More Complicated Example

configuration:
Getting started

Deployment Recipe A task library [ruby]
Spinner Capistrano.configuration(:must exist).load do
Spawner task :my funky task, :roles => :app do
Reaper
Deploying end
4. Recipes task :another funky task do
Introduction
Variables end
Roles end
Tasks

Extending Tasks

The :must exist parameter simply guards against your file being loaded outside of a
5. Standard Tasks Capistrano recipe file. If it is, an exception will be raised indicating that was the case.
Overview

cleanup
cold_deploy rubygems, or with a “setup.rb”http://i.loveruby.net/en/projects/setup/ file.

Then, you package the file up (let’s call it "custom-tasks.rb") and distribute it, either via

deploy

diff from last_deploy 7.3 Using a Task Library

disable web

enable web Now, you (or your friend, or anybody else) can use that library simply by installing it. In

invoke your deploy.rb, you just require the file like you would any other ruby file:

migrate

restart

Using a task library [ruby]

rollback require 'custom-tasks'

rollback code

setup Doing cap show tasks now ought to list your two custom tasks, along with all the standard
show_tasks
_ ones.

spinner
symlink . . .
update code 7.4 Extension Libraries

6. Creating Tasks Sometimes, you'll write methods that you want multiple tasks to share. The methods
Overview themselves aren’t tasks, they are simply lower-level operations, like the run or put or
run delete methods that Capistrano itself provides.
sudo
put Capistrano allows you to easily distribute and share libraries of these extension methods, as
delete well as tasks. Simply put your extension methods in a module, register the module with
render Capistrano, and then package it up and ship it. People can then use your extension
transaction methods simply by requiring the file, the same as with task libraries.

on_rollback == ,
. Sample extension library [ruby] |

7. Extending Capistrano

Task Libraries require ‘'capistrano’
Writing a Task Library
)) module MyReportingMethods
Using a Task Library . .
def display(options={})
Extension Libraries
run(...)
put(...)
Options
end
exports
end
recent changes
rss 2.0 | atom Capistrano.plugin :report, MyReportingMethods
Authors The last line is where your plugin is registered with Capistrano. You simply give it a name
Login Signup (:report, in this case) and point it at your new module.

Once a recipe file loads this extension, it can access your report’s display method via
report.display(...), effectively namespacing your extension methods.

Using an extension library [ruby]

require 'my reporting methods'

task :show general report do
report.display
end

task :show_app report, :roles => :app do
report.display
end

« previous chapter

