
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

« previous chapter next chapter »

About Download Documentation Weblog Community Source

3. A More Complicated Example
3.1 Getting started
In the previous chapter, we looked at a simple deployment environment that consisted of a

single production box. Although this is a valid environment for small deployments

(Basecamp started out this way, for example), it rapidly becomes untenable as an

application grows.

This chapter will revisit the “flipper” application from the previous chapter. Let’s assume a

year has passed, and we have much higher usage. The application has definitely outgrown

it’s single box. Instead, we’ll do the following:

Two web servers accessed via load-balancers. The web servers will be running Apache.

Two application servers accessed via load-balancers from the web servers. The

application servers run standalone FastCGI processes.

Two database servers, one as master, one as slave.

This configuration should allow us to scale nicely to much higher usage. And Capistrano

allows us to deploy to this kind of configuration with very little effort.

3.2 Deployment Recipe
The first thing we need to do is revisit our deployment recipe. The roles, in particular need

to be completely revisited, and we can also get rid of our custom restart task. The

complete deploy.rb file looks like this:

Multi-server deployment recipe [ruby]

1
2
3
4
5
6
7

We now have two servers (www1 and www2) in the web role, and two servers (app1 and

app2) in the app role. Fairly self-explanatory.

Looking at the db role, though, we have one server (db1) with the extra information

:primary => true. This tells Capistrano that some tasks should be executed only on this

server, and not on all db servers. (This is useful for things like migrations, where you only

want them applied to the primary copy of the data. You could also add :slave => true to

the db2 server and then define a backup task that only ran on the slave.)

We can now run the setup task again to make sure our directories are all set up on all six

machines. Just type:

Running setup [shell]

3.3 Spinner
Rails comes with three utilities (spinner, spawner, and reaper) for managing your FastCGI

processes.

The spinner script is located in the script/process directory of your application. (If your

application doesn’t have this script, you probably just need to update your application to

the latest version. Rails 0.13.1 was the last version of Rails without the scripts.)

The spinner script is intended to be a continually running process that watches the

spawned FastCGI processes. When you start the spinner, you also specify a command to

invoke that will start your FCGI processes. This command is usually the spawner:

Spinner Example [shell]

In the above example, the spinner is given the command to execute (the reference to

spawner, which we’ll describe next), and is told to daemonize (the -d switch). By default,

the spinner will attempt to execute the given command every 5 seconds. This is an

admittedly brute force method of making sure your FastCGI listeners are always up.

Because it is tedious to type the above command frequently, we’ll extract the whole thing

into its own script, and put it in script/spin.

3.4 Spawner
The spawner script is used to spawn multiple FastCGI listeners. You can give it various

parameters (try spawner -h to see them all), but the notable ones in this context are:

-p: the first port number for the listeners to use

-i: the number of listener instances to start, one per port, starting on the port given by

-p

Thus, as used above by the spinner, each time the spinner executes the spawner

command (by default, once every 5 seconds), it will try to start 5 FastCGI’s listeners on

ports 7000-7004. A listener can’t start if there is already one listening on that port, so only

those listeners that have died will actually be respawned.

3.5 Reaper
The reaper is the opposite of the spawner—it gracefully restarts all running FCGI listeners

(sending them USR2 signals, by default).

The reaper also sends (by default) a USR1 signal to the active spinner processes. This

causes the spinner to shift into high gear, attempting to restart FastCGI listeners every half

second, instead of every 5. Then, when the reaper is done, it drops the spinner back down

into low gear. This makes sure that new listeners are started as promptly as possible if the

any are killed during the restart.

This means that once the spinner is going, all it takes to restart your FastCGI processes is

to invoke the reaper on them. The rest happens automatically.

The restart task invokes the reaper without arguments by default, so if you want to use a

different restart mechanism (i.e., USR1 to kill the processes instead of USR2 to restart them)

you will need to implement your own restart task.

3.6 Deploying
The first deployment is a bit tricky with this setup, because you have to do some

bootstrapping. The spinner isn’t running, and you have to get it running. But we can’t get it

running until we’ve deployed the application…

Not to worry. We’ll just create a couple of custom tasks that will get everything set up for

us:

Tasks for initial deployment [ruby]

1
2
3
4
5
6
7
8
9

10
11
12
13
14

The first task only applies to the app servers, and all it does is start the spinner by invoking

our custom spin script.

The second task is a more complicated one. It calls the update_code and symlink tasks in

a transaction. This means that if either of those tasks fails, they will be rolled back, leaving

the system in a consistent state. Once those two tasks finish successfully (executing on all

boxes), our new spinner task is invoked (which will only be executed on the app servers,

remember).

Once that’s all done, you just have to invoke the cold_deploy task, and you’re golden!

Invoking cold_deploy [shell]

Once you’ve got the spinner running, future deployments can simply use the default deploy

task:

Invoking deploy [shell]

 set :application, "flipper"
 set :repository, "http://svn.capistrano.com/flipper/trunk"

 role :web, "www1.capistrano.com", "www2.capistrano.com"
 role :app, "app1.capistrano.com", "app2.capistrano.com"
 role :db, "db1.capistrano.com", :primary => true
 role :db, "db2.capistrano.com"

 rake remote:exec ACTION=setup

 /u/apps/flipper/current/scripts/process/spinner \
 -c '/u/apps/flipper/current/scripts/process/spawner -p 7000 -i 5' \
 -d

 desc "Start the spinner daemon"
 task :spinner, :roles => :app do
 run "#{current_path}/script/spin"
 end

 desc "Used only for deploying when the spinner isn't running"
 task :cold_deploy do
 transaction do
 update_code
 symlink
 end

 spinner
 end

 rake remote:exec ACTION=cold_deploy

 rake deploy

