Chapters
1. Introduction
What is Capistrano?
What can it do?

What assumptions does it
make?

2. Quick Start
Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying
Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes
Introduction

Variables
Roles
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web
enable web
invoke
migrate
restart
rollback
rollback code

setup
show tasks

spinner
symlink
update code

6. Creating Tasks

Overview

run

sudo

put

delete
render
transaction

on_rollback

7. Extending Capistrano
Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options
exports

recent changes

rss 2.0 | atom

Authors
Login Signup

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

2. Quick Start
2.1 Getting started

An example is worth a lot. This chapter will describe very simple one-box environment, and
demonstrate how to use Capistrano to manage it. This will introduce some of the basic
concepts, which we can build on in the next chapter.

The production environment is this: a single production machine (we'll call it
“simple.capistrano.com”), running MySQL 4.x, using FastCGI and Apache. The application
uses the lateset bleeding-edge version of Rails.

This imaginary application (we'll call it “Flipper”) is stored in a subversion repository at
http://svn.capistrano.com/flipper/trunk.

One disclaimer: the default Capistrano tasks assume a distributed environment in which the
FastCGI processes are managed separately from the web server. For the sake of simplicity,
we’ll assume Apache is managing the FastCGI processes for this example, and delve into
the more complex setup in the next chapter.

2.2 Installing Capistrano

Capistrano is most easily installed as a gem. Just do gem install capistrano and you're
good to go.

Once you have Capistrano installed, you should be able to invoke the cap utility. To ensure
it is installed correctly, just execute cap -h. You should see a help screen. (If you don't,
Capistrano was either not installed, or not installed correctly.)

Now that Capistrano is installed, you can “capistranize” your rails application in one simple
command:

cap --apply-to /path/to/my/app MyApplicationName

The /path/to/my/app is the location of the base directory of your application—it’s “rails
root”. MyApplicationName iSs the name of your application. (You can change this later,
easily, so if you don’t know what to put here right now, just put “application”.)

And now you should be set to get started!

2.3 Deployment Recipe

The deployment recipe is to Capistrano, as the Rakefile is to Rake. It describes the tasks
that are to be performed, and the subsets of servers they are to be performed on. By
default, it is called deploy.rb and resides in the config directory.

When developing a deployment recipe, it helps to have a template to work from. Rails
provides a “deployment” generator that creates a default deployment recipe in the
config/deploy.rb file, which you can tailor to your specific needs.

Our deployment script starts by setting the two required variables:

Required variables for deployment recipes [ruby]

1 set :application, "flipper"
2 set :repository, "http://svn.capistrano.com/flipper/trunk"”

The :application variable names the application being deployed. This is used for various
things, but most notably to describe the path being deployed to on the remote server.

The :repository variable is the location of the (subversion, in this case) repository that
stores our code. (Note that, for subversion, you cannot use file:// repositories with
Capistrano.)

Once you’'ve defined the application and repository, all you need to define further is the list
of roles (and the servers in each role). In our case, we only have one server, so that server
is going to be pulling multiple duties:

Defining our roles [ruby]

1 role :app, "simple.capistrano.com"”
2 role :web, "simple.capistrano.com"
3 role :db, "simple.capistrano.com”

You can define whatever roles you want, but the default Capistrano tasks look for those
three: :app, :web, and :db. The :app role describes which servers are acting as the
application servers (the servers running the FastCGI instances). The :web role describes the
servers running Apache, and the :db role describes the servers running your database(s).
In our case, they're all the same box.

That's it! Your recipe is ready to use. The default tasks provided by Capistrano are sufficient
for what we need to do right now, but we’ll demonstrate doing some custom tasks shortly.

2.4 Setup

Okay, now that we’ve got a basic deployment recipe going, we can try it out by executing
the setup task. This task will set up the basic deployment directory structure on our
production box for us.

The deployment directory structure is:

Deployment directory structure [chart]

[deploy to]
+- releases
| +- 20050725121411
| +- 20050801090107
| +- 20050802231414
| e
| +- 20050824141402
| | +- Rakefile
| | | app
| | | config
| | | db
1| 1ib
| | | log --> [deploy to]/shared/log
| | | public
| L I
| | | system --> [deploy to]/shared/system
| | |
| | | script
| | | test
| | | vendor
|
+- shared
| +- log
| +- system
|
+ current --> [deploy to]/releases/20050824141402

The [deploy to] represents the root of your deployment path. By default, Capistrano uses
"/u/apps/#{application}" as the root of the deployment path, but you can specify
whatever root you want via the :deploy to variable in your recipe file:

Custom deployment root [ruby]

set :deploy to, "/var/www/flipper"

Beneath the deployment root are two other directories, releases and shared. The
releases directory contains one subdirectory for every released version of your software.
Each subdirectory is named for the time (in Universal Standard Time) at which it was
deployed.

The shared directory contains directories and files that should be shared between multiple
releases, like log files and static system HTML files (like a “"down for maintenance page”).

Finally, the deployment root contains a symlink called current that points the current
release.

It isn't necessary to build all these directories yourself. You can use the default setup
Capistrano task to do it for you. Just type the following:

Executing the setup task [shell]

rake remote:exec ACTION=setup

This will prompt you for your server’s password. (If you don’t want the password to echo to
the screen as you type it, be sure you have the termios gem installed—only guaranteed to
work in *nix environments.)

After you enter the password, Capistrano will go out to your server and build the necessary
directories, chmod-ing them as necessary.

Nifty, huh? But this is only the beginning...

2.5 Apache Configuration

We should take a moment here and make sure we’ve got Apache configured for our
application. Anticipating only a moderate load (at least initially), we figure five FastCGI
instances should be enough for getting on with. The following snippets of Apache
configuration should be sufficient to configure our web server for that:

Configuration snippets [apache]

LoadModule fastcgi module libexec/apache/mod_ fastcgi.so
AddModule mod fastcgi.c
AddHandler fastcgi-script fcgi

FastCgiIpcDir /tmp/fcgi ipc
FastCgiServer /u/apps/flipper/current/public/dispatch.fcgi -initial-env

[:— - -

Of course, we'll also need to configure vhosts as appropriate using (as shown above)
/u/apps/flipper/current as the RaILs RooT of our application.

2.6 Deploying

Okay, let’s look at writing our first custom task. We can’t use Capistrano’s default
deployment task because it assumes we are using a distributed set up. As a result, it will
try to restart the application in a way incompatible with our single-server setup.

To make it work, we’ll just add the following task to our deploy.rb file:

Redefining the restart task [ruby]

desc "Restart the web server"

task :restart, :roles => :app do
sudo "apachectl graceful"

end

=S W N

The first line gives us a description of the task we are defining. (You can see all available
deployment tasks, and their descriptions, by typing rake show deploy tasks.) The next
line defines a task named restart, that only applies to servers in the app role. When
invoked, it will execute apachectl graceful on all app servers, via sudo.

Once you've got that task defined, we can try it out. Just type:

Deploy the application [shell]

rake deploy

This will (again) prompt for your password for the remote server, and then will do the
following things:

Checkout the latest revision of your application to the releases directory
Update (or create) the current symlink so it points to this new revision
Invoke the restart task that we just redefined

The checkout/symlink process is roughly atomic, so if any part of those two tasks fail, the
symlink will be restored to the prior revision and the newly checked out revision deleted.

Note that by default, Capistrano checks out the /atest revision of your code. If you ever
want to checkout a revision other than the latest, you can specify the revision you want via
the :revision variable (see chapter 4 for more about variables).

2.7 Rolling back a release

So, let’s assume we’ve gone through this process a few times, and everything has gone
well. Suddenly, though, we push a release into production that is a lemon—things start
going crazy and we need to get it out fast.

Simple. Just type:

Rolling back a release from production [shell]

rake rollback

This will go to the remote server, update the current symlink to point to the previous
revision, delete the bad revision from off of the server, and then restart the web server.

«_previous chapter next chapter »

