Chapters
1. Introduction
What is Capistrano?
What can it do?

What assumptions does it
make?

2. Quick Start
Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying
Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes
Introduction

Variables
Roles
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web
enable web
invoke
migrate
restart
rollback
rollback code

setup
show tasks

spinner
symlink
update code

6. Creating Tasks

Overview

run

sudo

put

delete
render
transaction

on_rollback

7. Extending Capistrano
Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options
exports

recent changes

rss 2.0 | atom

Authors
Login Signup

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

3. A More Complicated Example
3.1 Getting started

In the previous chapter, we looked at a simple deployment environment that consisted of a
single production box. Although this is a valid environment for small deployments
(Basecamp started out this way, for example), it rapidly becomes untenable as an
application grows.

This chapter will revisit the “flipper” application from the previous chapter. Let’s assume a
year has passed, and we have much higher usage. The application has definitely outgrown
it's single box. Instead, we'll do the following:

Two web servers accessed via load-balancers. The web servers will be running Apache.
Two application servers accessed via load-balancers from the web servers. The
application servers run standalone FastCGI processes.

Two database servers, one as master, one as slave.

This configuration should allow us to scale nicely to much higher usage. And Capistrano
allows us to deploy to this kind of configuration with very little effort.

3.2 Deployment Recipe

The first thing we need to do is revisit our deployment recipe. The roles, in particular need
to be completely revisited, and we can also get rid of our custom restart task. The
complete deploy.rb file looks like this:

Multi-server deployment recipe [ruby]

1 set :application, "flipper"

2 set :repository, "http://svn.capistrano.com/flipper/trunk"
3

4 role :web, "wwwl.capistrano.com", "www2.capistrano.com"

5 role :app, "appl.capistrano.com", "app2.capistrano.com"

6 role :db, "dbl.capistrano.com", :primary => true

7 role :db, "db2.capistrano.com"

We now have two servers (wwwl and www2) in the web role, and two servers (appl and
app2) in the app role. Fairly self-explanatory.

Looking at the db role, though, we have one server (dbl) with the extra information
:primary => true. This tells Capistrano that some tasks should be executed only on this
server, and not on all db servers. (This is useful for things like migrations, where you only
want them applied to the primary copy of the data. You could also add :slave => true to
the db2 server and then define a backup task that only ran on the slave.)

We can now run the setup task again to make sure our directories are all set up on all six
machines. Just type:

Running setup [shell]

rake remote:exec ACTION=setup

3.3 Spinner

Rails comes with three utilities (spinner, spawner, and reaper) for managing your FastCGI
processes.

The spinner script is located in the script/process directory of your application. (If your
application doesn’t have this script, you probably just need to update your application to
the latest version. Rails 0.13.1 was the last version of Rails without the scripts.)

The spinner script is intended to be a continually running process that watches the
spawned FastCGI processes. When you start the spinner, you also specify a command to
invoke that will start your FCGI processes. This command is usually the spawner:

Spinner Example [shell]

/u/apps/flipper/current/scripts/process/spinner \
-c '/u/apps/flipper/current/scripts/process/spawner -p 7000 -i 5' \
-d

In the above example, the spinner is given the command to execute (the reference to
spawner, Which we'll describe next), and is told to daemonize (the -d switch). By default,
the spinner will attempt to execute the given command every 5 seconds. This is an
admittedly brute force method of making sure your FastCGI listeners are always up.

Because it is tedious to type the above command frequently, we’ll extract the whole thing
into its own script, and put it in script/spin.

3.4 Spawner

The spawner script is used to spawn multiple FastCGI listeners. You can give it various
parameters (try spawner -h to see them all), but the notable ones in this context are:

-p: the first port number for the listeners to use
-i: the number of listener instances to start, one per port, starting on the port given by

Thus, as used above by the spinner, each time the spinner executes the spawner
command (by default, once every 5 seconds), it will try to start 5 FastCGI’s listeners on
ports 7000-7004. A listener can't start if there is already one listening on that port, so only
those listeners that have died will actually be respawned.

3.5 Reaper

The reaper is the opposite of the spawner—it gracefully restarts all running FCGI listeners
(sending them usr2 signals, by default).

The reaper also sends (by default) a usr1 signal to the active spinner processes. This
causes the spinner to shift into high gear, attempting to restart FastCGI listeners every half
second, instead of every 5. Then, when the reaper is done, it drops the spinner back down
into low gear. This makes sure that new listeners are started as promptly as possible if the
any are killed during the restart.

This means that once the spinner is going, all it takes to restart your FastCGI processes is
to invoke the reaper on them. The rest happens automatically.

The restart task invokes the reaper without arguments by default, so if you want to use a
different restart mechanism (i.e., usr1 to kill the processes instead of usr2 to restart them)
you will need to implement your own restart task.

3.6 Deploying

The first deployment is a bit tricky with this setup, because you have to do some
bootstrapping. The spinner isn’t running, and you have to get it running. But we can't get it
running until we've deployed the application...

Not to worry. We’'ll just create a couple of custom tasks that will get everything set up for

us:
. Tasks for initial deployment [ruby]

1 desc "Start the spinner daemon"
2 task :spinner, :roles => :app do
3 run "#{current path}/script/spin"
4 end
5
6 desc "Used only for deploying when the spinner isn't running"”
7 task :cold deploy do
8 transaction do
9 update_ code

10 symlink

11 end

12

13 spinner

14 end

The first task only applies to the app servers, and all it does is start the spinner by invoking
our custom spin script.

The second task is a more complicated one. It calls the update code and symlink tasks in
a transaction. This means that if either of those tasks fails, they will be rolled back, leaving
the system in a consistent state. Once those two tasks finish successfully (executing on all
boxes), our new spinner task is invoked (which will only be executed on the app servers,
remember).

Once that’s all done, you just have to invoke the cold deploy task, and you’re golden!

Invoking cold_deploy [shell]

rake remote:exec ACTION=cold deploy

Once you’ve got the spinner running, future deployments can simply use the default deploy
task:

Invoking deploy [shell]

rake deploy

«_previous chapter next chapter »

