1.

2.

Chapters

Introduction

What is Capistrano?
What can it do?

What assumptions does it
make?

Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

5. Standard Tasks

5.1 Overview

Capistrano comes with several tasks predefined, almost all of which are targeted specifically
at deploying web applications. Some of the tasks are specific to deploying Rails applications
(keep in mind that Capistrano was originally designed to integrate nicely with Rails).

This chapter will introduce each of the standard tasks, and describe how they can be used,
configured, and (where necessary) overridden to achieve your own ends.

Setup _ . . .
. _ Note that at any time you can see what tasks are available—including both your own
Apache Configuration
Deplovin custom tasks and the standard ones—by running rake show deploy tasks. Also note that

Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes

Introduction

you can look at the definitions for these tasks by finding the
capistrano/recipes/standard.rb file, located wherever Capistrano was installed.

Finally, as mentioned in Extending Tasks, you can add before and after hooks to any of
these tasks, simply by defining a task with the same name and prepending either before

or after_to it.

5.2 cleanup

When you've deployed your application a few times, you'll notice the releases directory
tends to accumulate a lot of stuff that isn’t necessary any more. You'll almost never rollback

Variables more than one or two releases if anything goes wrong (but if you do need to, there are
Roles more efficient ways of doing it than calling rol1back over and over).
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web

Thus, this task was introduced in version 0.10.0. The cleanup task will delete unused
releases, keeping (by default) only the 5 most recent. If you would rather keep more or
fewer than 5, you can set the :keep releases variable in your recipe file.

This task runs on all roles. Also, it uses sudo to do the delete. There is not currently a way
to change this, but if you need to use run instead of sudo, you can copy the task from the
standard.rb to your own recipe file and tweak it as necessary.

enable web 5.3 cold_deploy

invoke

migrate The cold_deploy task is used when deploying an application for the first time. It will

restart basically start the application’s spinner (via the spinner task) and then do a normal deploy.
rollback You'll rarely need to use this more than once for an application.

rollback code

setup
show tasks

spinner
symlink
update code

6. Creating Tasks

5.4 deploy

The deploy task is intended to help you push a new release of your software into
production. It updates the code on all servers (via the update code and symlink tasks),
and then restarts the FastCGI listeners on the application servers (via the restart task). If
you are using a different way of running your applications (like using Apache to manage

Overview your FastCGI processes), you may need to override the restart task to meet your specific
run needs.

sudo

put The update code and symlink tasks are executed in a transaction, so if either of them fail
delete your application will be left in its original state.

render

transaction

on_rollback

7. Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

5.5 diff_from_last_deploy

This task simply prints the difference between what was last deployed, and what is
currently in your repository. It can be useful for determining what changed since your last
deploy.

5.6 disable_web

There are times when you want to temporarily disable web access to your application, such
as when you are doing database maintenance, or upgrading your Ruby installation. The
disable web task may be used in this instance to put up a static maintenance page that is

Options

exports displayed to visitors, instead of your application.

recent changes

This task assumes several things:
rss 2.0 | atom
You are using Apache to front your applications.

Authors Your web servers are all in the :web role.

Login Signup There is a system symlink in your application’s public directory that points to a

#{shared path}/system directory.
You have an rewrite rule set up that redirects all requests to
/system/maintenance.html if that file exists.

If all three of these conditions hold, all you need to do to disable web access to your
application is rake remote exec ACTION=disable web. If any one of those conditions don't
hold for your environment, then you’ll need to override the entire disable web task and
script it for your specific needs.

Additionally, you can specify the unTIL and REASON environment variables, which will be
used to tailor the maintenance.html file that gets generated. unt1iL should be a time (like
“"10pm UTC") or period (“this evening”, or “tomorrow morning”)—basically any phrase that
can complete the phrase "back by #{time}".

The rREASON environment variable may be used to specify the purpose of the downtime. By
default, the word “maintenance” will be used, but any term can be used that will complete
the phrase "down for #{reason}".

So, you can create a customized maintenance screen by typing:

_ Customized disable_web [shell]

rake remote_ exec ACTION=disable web \
UNTIL="tomorrow morning" \
REASON="a vital database ugrade"

To help get you started using this task, here’s an Apache rewrite condition that looks for
and displays the maintenance.html page, but only if it exists:

Apache rewrite support for disable_web [apache]

1 RewriteCond %${DOCUMENT ROOT}/system/maintenance.html -f
2 RewriteCond ${SCRIPT FILENAME}
3 RewriteRule ".*$ /system/maintenance.html [L]

!maintenance.html

To re-enable your application, you can use the enable web task.

5.7 enable_web

The enable web task is the reverse of the disable web task, and makes the same
assumptions about your environment. All it does is delete the maintenance.html file in
#{shared path}/system. Assuming your Apache rewrite rules are set up right, deleting
that file should be all it takes to unlock your app and let visitors in again.

5.8 invoke

For most things, you’ll want to create tasks to describe the operations you perform on your
servers. However, sometimes there is just a one-off command you want to execute—
updating a single file, or dumping the contents of some file. In those instances, you can use
the invoke task to easily execute some arbitrary command-line on your servers.

To use it, just specify the COMMAND environment variable. To restrict the command to a
specific set of roles, you can set the ROLES environment variable to a comma-delimited list
of role names. (By default, the command will be executed on all roles.) Finally, if you want
the command to be executed via sudo, you can set the SUDO environment variable to
some non-blank value.

 Using the invoke task [shell]

rake remote exec ACTION=invoke \
COMMAND="svn up /u/apps/flipper/current/app/views" \
ROLES=app

5.9 migrate

The migrate task exists to help you run ActiveRecord migrations against your production
database. It assumes that:

your database servers are in the :db role, and
your primary database server has :primary => true associated with it.

The migrate task will only be executed for the :db server with :primary => true.

By default, all this task does is change to the directory of your current release (as indicated
by the current symlink), and run rake RAILS ENV=production migrate. YOou can specify
that it should run against the /atest release (regardless of what the current release is) by
setting the migrate target variable to :1atest before invoking this task. Likewise, if you
want to specify additional environment variables (beside raILs ENV) you can set the
migrate env variable to the space-delimited list of name=value pairs to use.

(Note that for long-running migrations, or those that lock particularly busy tables, you may
want to run disable web first to reduce contention for the database.)

5.10 restart

The restart task is used to restart all FastCGI listeners for your application. It simply calls
the reaper command, without arguments, which falls back to the default behavior of
sending the usr2 signal to all active processes for your application. (The
spinner/spawner/reaper Setup is described in greater detail in Chapter 3: A More

Complicated Example.)

By default, sudo is used to invoke the reaper. If your reaper is running as your user and
you do not need to use (or have access to) sudo, you can set the :use sudo variable to
false, sO that the reaper is invoked via run instead.

The restart task is only executed on the servers in the :app role.

5.11 rollback

The rollback task will roll your application back to the previously deployed version. It does
this by first calling the update code task, and then invoking restart to get your FastCGI
listeners looking at the right version.

This task can be a lifesaver. Unless you never make any mistakes, someday you’re bound to
deploy a lemon, and you’ll be grateful on that day that you can easily and cleanly rollback
to your previous version.

(Note that this only rolls back the code—it does not undo any database migrations that
might have been applied by the latest deployment. If you need to rollback database
migrations or other wider-ranging environment changes, you can either write your own
tasks, or run the disable web task to give you enough time to manually roll the larger
changes back. Not a beautiful solution, but as Capistrano matures, so will its ability to cope
with these larger issues, out of the box.)

5.12 rollback code

The rollback code task is primarily used as a single component of the rollback task, but
it may occassionally be useful on its own. All it does determine what the previous release
was (if one exists), update the current symlink to point to that, and then delete the latest
release. It affects all servers.

5.13 setup

The setup task only needs to be run once, at the beginning of your application’s lifecycle
(or any time a new server is added to your production environment). It is non-destructive,
though, and may safely be executed against an existing production system.

It runs against all servers, and sets up the expected directory tree. Specifically, it

Creates the releases path directory and chmods it to 0775.
Creates the shared path directory.

Creates the shared path/system directory and chmods it to 0775.
Creates the shared path/log directory and chmods it to 0777.

You can define additional setup logic by creating an after setup task, which will be called
after this task.

5.14 show_tasks

The show tasks task never does any work on any remote servers. All it does is inspect the
existing tasks and display them to standard out in alphabetical order, along with their
descriptions. This will include both the standard tasks (described here), as well as your own
custom tasks.

The default Rails Rakefile makes it easy to execute this task:

rake show deploy tasks

5.15 spinner

The spinner task may be used to start the spinner process for your application (as
described in chapter 3). It assumes that you have a file script/spin in your application,
that describes the process for starting the spinner.

Also, by default the spinner will be started as the app user. If you wish to start it as a
different user, set the :spinner user variable to something else. (This only works if you
are using sudo to start the spinner. If you can’t use sudo, or don’t want to use sudo, set
the :use_sudo variable to false, and the spinner will always be started as you.)

5.16 symlink

The symlink task simply attempts to update the current symlink to the latest deployed
version of the code. You will almost never need to invoke this task directly, but it is used
internally by other tasks.

5.17 update_code

The standard update code task will deploy the latest revision of your code to all of your
servers. It also does some tweaking and linking to hook up the new release to shared
directory. Specifically, this task will:

Checkout your source code (according to your selected SCM)

Delete the 10g and public/system directories in your new release (if they exist)
symlink 1og to #{shared path}/log

symlink public/system tO #{shared path}/system

Note that because it deletes the 10g and public/system directories, you ought not to store
anything in those directories that you want put into the production.

This task is frequently extended with after hooks (by creating an after update code task)
to allow you to add application-specific deployment logic. You need to change the
permissions on one of your scripts? Or update your database.yml Or environment.rb file
dynamically? The after update code task is where you’ll do it.

If update code is run inside of a transaction and it fails for whatever reason (the checkout
fails, or whatever), the new release will be deleted from the server, leaving your system in
the state it was originally.

«_previous chapter next chapter »

