Chapters
1. Introduction
What is Capistrano?
What can it do?

What assumptions does it
make?

2. Quick Start
Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying
Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes
Introduction

Variables
Roles
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web
enable web
invoke
migrate
restart
rollback
rollback code

setup
show tasks

spinner
symlink
update code

6. Creating Tasks

Overview

-
o

n

udo

put
delete

1]

render
transaction

on_rollback

7. Extending Capistrano
Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options
exports

recent changes

rss 2.0 | atom

Authors
Login Signup

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

4. Recipes

4.1 Introduction

At this point, you've seen a few Capistrano recipes. You've been exposed to all three of the
building blocks of recipes: variables, roles, and tasks. In this chapter, we’ll take a closer
look at each of these components and understand better what they can do for us.

4.2 Variables

Capistrano variables are set using the set keyword. Once set, you can access them in your
recipes by name:

Using variables [ruby]

1 set :application, "flipper"
2 puts "The application name is #{application}"

(Note that because Capistrano recipe files are really just specialized Ruby scripts, you can
do most anything in a recipe file that you would be able to do in a full-fledged Ruby script.)

You can set any variables you want. This allows you to create (for instance) configurable
tasks that you can then share with others—you just define your tasks to use certain
variables, and then others can set those variables in their own scripts. The subversion and
darcs scm modules use this approach, allowing you to set (respectively) the :svn and
:darcs variables to define where the executables are on the remote hosts (if they aren’t in
the default path).

Capistrano also defines several pre-defined variables internally. Some of the more
commonly used of these variables are:

Variable Default Description

application (required) The name of your application. Used to build other
values, like the deployment directory.

repository (required) The location of your code’s scm repository.

gateway nil The address of the server to use as a gateway. If
given, all other connections will be tunneled through
this server.

user (current user) The name of the user to use when logging into the

remote host(s).

password (prompted) The password to use for logging into the remote
host(s). Probably not a good idea to set this in
recipe files, for various reasons.

deploy to “/u/apps/#{application}” The root of the directory tree on the remote host(s)
that the application should be deployed to.

version dir “releases” The directory under deploy to that should contain
each deployed revision.

current_ dir “current” The name to use (relative to deploy to) for the
symlink that points at the current release.

shared dir ‘“shared” The name of the directory under deploy to that will
contain directories and files to be shared between all
releases.

revision (latest revision) This specifies the revision you want to check out on
the remote machines. (Because the definition of a
“revision” differs from SCM to SCM, the actual
format of this variable is rather free form.)

scm :subversion The source control module to use. Currently
supported modules are :subversion, :cvs, and

c:darcs.

svn (path) The location on the remote host(s) of the svn
executable. This is useful if subversion is installed in
a non-standard path on the servers.

checkout "co" The subversion operation to use when checking out
the code on the remote host. This can be set to
"export" if you would rather do an svn export
instead of co.

cvs (path) The location on the remote host(s) of the cvs
executable. This is useful if CVS is installed in a non-
standard path on the servers.

darcs (path) The location on the remote host(s) of the darcs
executable. This is useful if darcs is installed in a
non-standard path on the servers.

ssh _optionsHash.new This is a hash of additional options that you would
like passed to the SSH connection routine. This lets
you set (among other things) a non-standard port to
connect on (ssh _options[:port] = 2345).

use sudo true Whether or not tasks that can use sudo, ought to
use sudo. In a shared environment, this is typically
not desirable (or possible), and in that case you
should set this variable to false, which will cause
those tasks to simply try to run the command
directly.

One last trick you can use with variables. Sometimes you want a variable to be evaluated

lazily, like deploy to iS. deploy to is set at the very beginning, by Capistrano, to

"/u/apps/#{application}", but at this point the application variable has not been set.

So what Capistrano does is set the deploy to variable to a proc instance, which gets

evaluated the first time deploy to is referenced:

Defining a variable to be lazily evaluated [ruby]

set(:deploy to) { "/u/apps/#{application}" }

Any time you set the value of a variable to be a block (or a proc instance), the first time
that variable is accessed the block will be executed, and the return value cached and
returned.

4.3 Roles

Roles, as we have seen, allow you to define named subsets of your production servers. You
can then define tasks that are only executed on these specific subsets.

To define a new role, you use the role keyword, followed by a comma-delimited list of
server names that belong in that role. Servers can be put in multiple roles (such as when
you have one server that hosts everything).

1 role :web, "www.capistrano.com"”

2 role :app, "appl.capistrano.com", "app2.capistrano.com"
3 role :db, "app2.capistrano.com"”

4 role :spare, "genghis.capistrano.com"

You can define as many servers in as many roles as you want. You can even use any name
you want for the roles, but Capistrano’s standard roles are written to look for three in
particular web, app and db.

If the last parameter to role is a Hash, the values will be used to further specialize the
servers in that list, creating (in effect) sub-roles:

Defining roles [ruby]

1 role :db, "master.capistrano.com", :primary => true
2 role :db, "slave.capistrano.com"

In the above example, there are two servers in the db role, so any task associated with the
db role will be executed on both of them. However, one of the servers
(master.capistrano.com) is also given the more specific information of :primary => true
(meaning, in this case, that this server is the primary database server). Tasks may then be
defined that run only on servers in the db role, and with the :primary => true setting.

4.4 Tasks

Tasks are like methods. You create them (using the task keyword), give them a name and
then define what they ought to do. By default, a task is associated with all servers, unless
you explicitly specify the subset of servers to be used.

A task may invoke other tasks, simply by naming them. In this sense, a task really is like a
method, because it can be invoked anywhere:

Defining tasks [ruby]

task :hello world do
run "echo Hello, $HOSTNAME"
end

task :some_task do
puts "calling hello world..."
hello world

end

OOk WDN K

The above example creates two tasks, hello world and some task. Neither task specifies
a role, which means that both are potentially associated with all servers. However, let’s look
at what this means in practice.

If I execute the some_ task task, it will print calling hello world... to the terminal, and
will then invoke hello world. So far, so good—no servers have been touched, and all
activity has been on the local host.

However, when hello world is invoked, it calls run. All run does is attempt to execute the
given command on all associated remote hosts. (We'll talk more later about the available
helper methods, of which run is the most commonly used.) This means that as soon as run
is invoked, Capistrano inspects the current task and determines what roles are active, and
then determines which servers those roles map to. If no connection has been made a
server yet, the connection is established and cached, and then the command is executed in
parallel. This means that no connections are made to the remote hosts until they are
actually needed.

In the above example, then, no connection is established to any server until hello world
is invoked, and then connections are made to all defined servers in all roles. If we only
wanted the servers in the db and app roles to be used for that task, we could specify that:

Specifying roles [ruby]

1 task :hello world, :roles => [:db, :app] do
2 run "echo Hello, $HOSTNAME"
3 end

If you only want a single role to be used, you can specify it directly, without putting it in an
array (i.e., :roles => :db).

As was hinted at earlier in this manual, you can also specify extra information when adding
a server to a role:

Extra role information [ruby]

1 role :db, "master.capistrano.com", :primary => true
2 role :db, "slave.capistrano.com"

In the above example, the “"master” server has the extra information :primary => true,
while the “slave” server does not. Both are in the db role, but you can define a task that
will only execute on the “master” server like this:

1 task :hello world, :roles => :db, :only => { :primary => true } do
2 run "echo Hello, S$SHOSTNAME"
3 end

In this case, all servers in the db role, with :primary => true in their extra information
hash, will be targeted for the hello action task.

It should also be mentioned that tasks have complete access to all configuration variables:

1 task :hello world do

2 puts "The application is #{application}."

3 puts "The repository is #{repository}."

4 puts "Currently using #{scm} as the source control system."
5 puts "Deploying to #{deploy to}."

6 # etc.

7 end

4.5 Extending Tasks

Sometimes, you want to attach some logic to an existing task, either to execute before or
after the task itself. For instance, the standard setup task builds out the required
directories on each of your servers, but what if you have some other specific setup tasks
you'd like done at the same time?

Not a problem. Before Capistrano executes a task, it looks for any other task named
before xYz (where xyz is the name of the task to be executed). If it finds such a task, it
executes it first. Likewise, when it finishes executing a task successfully, it will look for (and
execute) after XYZ.

So, let’'s say you want to also create a shared/cache directory on each of your servers:

Defining an "after" task [ruby]

1 task :after setup, :roles => [:web, :app] do
2 run "mkdir -m 777 #{shared dir}/cache"
3 end

Notice that you can alsp specify roles and so forth forth these before and after tasks, so
even though setup (in this example) executes on all servers, you can have these extra

