
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

next chapter »

About Download Documentation Weblog Community Source

1. Introduction
1.1 What is Capistrano?
To say that Capistrano is a utitilty for deploying web applications would be akin to saying

that computers are machines that let you type school papers. It’s a gross understatement.

Capistrano is actually capable of doing far, far more than just deploying web apps. However,

because deployment of web apps is what Capistrano was originally created for, this manual

will focus on that, and then spend a little time at the end showing some of the other

possibilities.

Historically, Capistrano was originally called SwitchTower. The name was changed in March

2006 in response to a trademark conflict.

1.2 What can it do?
Ultimately, Capistrano is a utility that can execute commands in parallel on multiple servers.

It allows you to define tasks, which can include commands that are executed on the

servers. You can also define roles for your servers, and then specify that certain tasks

apply only to certain roles.

Capistrano is very configurable. The default configuration includes a set of basic tasks

applicable to web deployment. (More on these tasks will be said later.)

Capistrano can do just about anything you can write shell script for. You just run those

snippets of shell script on remote servers, possibly interacting with them based on their

output. You can also upload files, and Capistrano includes some basic templating to allow

you to dynamically create and deploy things like maintenance screens, configuration files,

shell scripts, and more.

1.3 What assumptions does it make?
As with the rest of Rails, Capistrano makes many assumptions, both about your code, and

the way you do things with it (like deployment).

There are basically two levels of assumptions in Capistrano: core assumptions, and

assumptions made by the default tasks.

The core assumptions of Capistrano tend to be quite general (though there are some

exceptions), and are not usually possible to override. They are:

You are interacting with at least one remote server.

You may need to tunnel through a gateway server to access your target server.

You are using SSH to connect to the servers.

The remote server is capable of understanding POSIX shell commands. (Windows, by

default, does not fall into this category. Neither do shells like csh and tcsh. Sorry.)

The password for all servers is the same.

Some things you only want to execute on a subset of your production environment,

rather than on all of your production servers.

The assumptions made by the default tasks are more specific, but are either configurable or

overridable. Some of them are:

You are deploying a web application.

You are using Ruby on Rails to develop your application.

You are using subversion to manage your source code.

You are deploying your application to ”/u/apps/#{appname}” on every machine.

You are using FastCGI to power your application.

You are fronting your app with either lighttpd or apache.

This manual will hold to these same assumptions, but will also show (where applicable) how

to configure or override them.

