1.

2.

Chapters
Introduction

What is Capistrano?
What can it do?

What assumptions does it
make?

Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup
Apache Configuration

Deploying
Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes

Introduction
Variables
Roles
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

6. Creating Tasks

6.1 Overview

Creating new tasks is easy. You might even be surprised how easy it is to do fairly complex
things. After all, this is all just Ruby code, and anything you can do in Ruby, you can do in a
Capistrano task.

There are several methods available to tasks to make your life (and tasks) easier. This
chapter will introduce each of them, and show how they can be used.

6.2 run

The run helper takes a single string identifying the command to execute. This command can
be any valid shell command, or even multiple commands chained together by &&. This
command (or commands) will be executed on all servers associated with the current task,
in parallel. If the executed command fails (returns non-zero) on any server, run will raise
an exception.

run <<-CMD

if [[-d #{release path}/status.txt]]; then
cat #{release path}/status.txt
fi

CMD

O Wb

Additionally, you can pass a block to run. The block will be invoked every time the
command produces output (stderr or stdout). The block should accept three parameters:
the channel (an object representing the underlying SSH channel being used to communicate
with the server), the stream (a symbol, either :err or :out), and the data itself.

The channel object allows you to send data back to the process, on it's stdin stream, by
calling send _data on the channel. Also, you can access the name of the host that produced
the output via channel[:host].

enable web . Example of capturing output [ruby]

invoke |

miarate 1 run "sudo ls -la" do |channel, stream, data|

migrate 2 if data =~ /"Password:/

restart 3 logger.info "#{channel[:host]} asked for password"
rollback 4 channel.send data "mypass\n"

rollback code 5 end

setup 6 end

show_tasks

spinner By default, the run command simply echos all output from all hosts to the terminal.
symlink

update code

6. Creating Tasks

6.3 sudo

The sudo command is exactly like the run command, except that it executes the command

:Jvnemew via sudo. This assumes that sudo is in a standard path on the remote host, and that the
;&) user you used to log into the server has permission to use sudo for the requested

put operation.

delete

render If a password is requested, the password used to log into the server will be used.

transaction

on_rollback

7. Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

sudo

"apachectl graceful"

Just like run, sudo can take a block to process output as well.

6.4 put

The put helper let’s you transfer data from the local host to a file on the remote host. In
this case, though, the file is transferred to all associated servers via a single call to put. If

Options Net::SFTP is available, it will be used to transfer the files, otherwise a less-robust method is

exports used (pipe to cat).

recent changes

rss 2.0 | atom To use put, just pass two parameters—a string containing the data to transfer, and the

name of the file to receive the data on each remote host. Optionally, you can also specify

Authors :mode => value to set the mode of the value. (Note, this will overwrite the file on the
Login Signup remote host!)

1 put (File.read('templates/database.yml"),
2 "#{release path}/config/database.yml",
3 :mode =>)

Also note that unless Net::SFTP is available, put cannot be used to (reliably) transfer binary
files.

6.5 delete

The delete command is just a convenience for executing rm via run. It just attempts to do
an rm -f (note the -f! Use with caution!) on the remote server(s), for the named file. To

do a recursive delete, pass :recursive => true:

Demonstrating delete [ruby]

delete "#{release path}/certs", :recursive => true

6.6 render

The render command is kind of an oddball, since it doesn’t change the remote servers at
all. It basically just provides an interface for easily rendering ERb templates and returning
the result.

So, how does this belong in something like Capistrano?

Consider the disable_web task. It dynamically generates and stores a maintenance.html

file on each web server, allowing you to specify a few different components of the
presentation (the reason for the downtime, and the estimated end time).

The render command makes this easy. You just have a maintenance.rhtml template that

you pass to render, along with the variables you want to use in the render, and then pass
the result to put.

You can use this for all sorts of things—dynamically constructing your database.yml, Or
customizing a script, or whatever you can think of.

If you pass a string to render, it is interpreted as the name of a template file to render.
The name need not be suffixed with ".rhtml”—if a file exists with the given name and
“.rhtml|” appended to it, that file will be used. The given file must exist relative either to the
current directory, or the capistrano/recipes/templates directory (for access to standard
template files).

Rendering a file [ruby]

render "maintenance"

The above will render the file "maintenance.rhtml” (or “"maintenance”, if
“maintenance.rhtml” does not exist) and return the result as a string. You can also specify
a hash of variables to use for the render (these will be treated as local variables within the
scope of the render):

Rendering a file with variables [ruby]

render "maintenance", :deadline => ENV['UNTIL'],
:reason => ENV['REASON']

If you don’t want to render a file, but instead have a string containing an ERb template that
you want to render, you can do it like this:

Rendering a string [ruby]

render :template => "Hello <%= target %>", :target => "world"

6.7 transaction

The transaction helper lets you execute a series of other tasks with some (limited) ability
to roll back their effects if any of them fail. What it really does is execute the attached
block, and if an exception is raised it looks to see what tasks have been executed, and then
executes the on rollback handler (see below) for each one (if one exists).

This means that the rollback is only as accurate as the on rollback handlers for the
associated tasks. And not all tasks specify on_rollback.

- Using a transaction [ruby]

1 task :push latest do
2 transaction do

3 update_ code

4 symlink

5 end

6

end

Of the standard tasks, the following define an on_rollback handler:

disable_ web
symlink

update code

6.8 on_rollback

The on_rollback helper allows a task to specify a callback to use if that task raises an
exception when invoked inside of a transaction (see transaction, above). It accepts no
parameters, only a block:

Specifying an on_rollback handler [ruby]

task :update code do

on_rollback { delete release path, :recursive => true }

end

Note that the on rollback clause is only executed when an exception is raised, when the
task is being executed inside the scope of a transaction call. If the task raises an
exception when no transaction is active, the on _rollback handler is not invoked.

