Chapters
1. Introduction
What is Capistrano?
What can it do?

What assumptions does it
make?

2. Quick Start
Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying
Rolling back a release

3. A More Complicated Example

Getting started

Deployment Recipe
Spinner

Spawner

Reaper

Deploying

4. Recipes
Introduction

Variables
Roles
Tasks

Extending Tasks

5. Standard Tasks

Overview

cleanup
cold deploy

deploy
diff from last deploy

disable web
enable web
invoke
migrate
restart
rollback
rollback code

setup
show tasks

spinner
symlink
update code

6. Creating Tasks

Overview

run

sudo

put

delete
render
transaction

on_rollback

7. Extending Capistrano
Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options
exports

recent changes

rss 2.0 | atom

Authors
Login Signup

Ruby on Rails

Sustainable productivity for web-application development

About | Download | Documentation | Weblog | Community | Source

1. Introduction
1.1 What is Capistrano?

To say that Capistrano is a utitilty for deploying web applications would be akin to saying
that computers are machines that let you type school papers. It's a gross understatement.
Capistrano is actually capable of doing far, far more than just deploying web apps. However,
because deployment of web apps is what Capistrano was originally created for, this manual
will focus on that, and then spend a little time at the end showing some of the other
possibilities.

Historically, Capistrano was originally called SwitchTower. The name was changed in March
2006 in response to a trademark conflict.

1.2 What can it do?

Ultimately, Capistrano is a utility that can execute commands in parallel on multiple servers.
It allows you to define tasks, which can include commands that are executed on the
servers. You can also define roles for your servers, and then specify that certain tasks
apply only to certain roles.

Capistrano is very configurable. The default configuration includes a set of basic tasks
applicable to web deployment. (More on these tasks will be said later.)

Capistrano can do just about anything you can write shell script for. You just run those
snippets of shell script on remote servers, possibly interacting with them based on their
output. You can also upload files, and Capistrano includes some basic templating to allow
you to dynamically create and deploy things like maintenance screens, configuration files,
shell scripts, and more.

1.3 What assumptions does it make?

As with the rest of Rails, Capistrano makes many assumptions, both about your code, and
the way you do things with it (like deployment).

There are basically two levels of assumptions in Capistrano: core assumptions, and
assumptions made by the default tasks.

The core assumptions of Capistrano tend to be quite general (though there are some
exceptions), and are not usually possible to override. They are:

You are interacting with at least one remote server.

You may need to tunnel through a gateway server to access your target server.

You are using SSH to connect to the servers.

The remote server is capable of understanding POSIX shell commands. (Windows, by
default, does not fall into this category. Neither do shells like csh and tcsh. Sorry.)
The password for all servers is the same.

Some things you only want to execute on a subset of your production environment,
rather than on all of your production servers.

The assumptions made by the default tasks are more specific, but are either configurable or
overridable. Some of them are:

You are deploying a web application.

You are using Ruby on Rails to develop your application.

You are using subversion to manage your source code.

You are deploying your application to “/u/apps/#{appname}” on every machine.
You are using FastCGI to power your application.

You are fronting your app with either lighttpd or apache.

This manual will hold to these same assumptions, but will also show (where applicable) how
to configure or override them.

next chapter »

