
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

« previous chapter next chapter »

About Download Documentation Weblog Community Source

5. Standard Tasks
5.1 Overview
Capistrano comes with several tasks predefined, almost all of which are targeted specifically

at deploying web applications. Some of the tasks are specific to deploying Rails applications

(keep in mind that Capistrano was originally designed to integrate nicely with Rails).

This chapter will introduce each of the standard tasks, and describe how they can be used,

configured, and (where necessary) overridden to achieve your own ends.

Note that at any time you can see what tasks are available—including both your own

custom tasks and the standard ones—by running rake show_deploy_tasks. Also note that

you can look at the definitions for these tasks by finding the

capistrano/recipes/standard.rb file, located wherever Capistrano was installed.

Finally, as mentioned in Extending Tasks, you can add before and after hooks to any of

these tasks, simply by defining a task with the same name and prepending either before_

or after_ to it.

5.2 cleanup
When you’ve deployed your application a few times, you’ll notice the releases directory

tends to accumulate a lot of stuff that isn’t necessary any more. You’ll almost never rollback

more than one or two releases if anything goes wrong (but if you do need to, there are

more efficient ways of doing it than calling rollback over and over).

Thus, this task was introduced in version 0.10.0. The cleanup task will delete unused

releases, keeping (by default) only the 5 most recent. If you would rather keep more or

fewer than 5, you can set the :keep_releases variable in your recipe file.

This task runs on all roles. Also, it uses sudo to do the delete. There is not currently a way

to change this, but if you need to use run instead of sudo, you can copy the task from the

standard.rb to your own recipe file and tweak it as necessary.

5.3 cold_deploy
The cold_deploy task is used when deploying an application for the first time. It will

basically start the application’s spinner (via the spinner task) and then do a normal deploy.

You’ll rarely need to use this more than once for an application.

5.4 deploy
The deploy task is intended to help you push a new release of your software into

production. It updates the code on all servers (via the update_code and symlink tasks),

and then restarts the FastCGI listeners on the application servers (via the restart task). If

you are using a different way of running your applications (like using Apache to manage

your FastCGI processes), you may need to override the restart task to meet your specific

needs.

The update_code and symlink tasks are executed in a transaction, so if either of them fail

your application will be left in its original state.

5.5 diff_from_last_deploy
This task simply prints the difference between what was last deployed, and what is

currently in your repository. It can be useful for determining what changed since your last

deploy.

5.6 disable_web
There are times when you want to temporarily disable web access to your application, such

as when you are doing database maintenance, or upgrading your Ruby installation. The

disable_web task may be used in this instance to put up a static maintenance page that is

displayed to visitors, instead of your application.

This task assumes several things:

You are using Apache to front your applications.

Your web servers are all in the :web role.

There is a system symlink in your application’s public directory that points to a

#{shared_path}/system directory.

You have an rewrite rule set up that redirects all requests to

/system/maintenance.html if that file exists.

If all three of these conditions hold, all you need to do to disable web access to your

application is rake remote_exec ACTION=disable_web. If any one of those conditions don’t

hold for your environment, then you’ll need to override the entire disable_web task and

script it for your specific needs.

Additionally, you can specify the UNTIL and REASON environment variables, which will be

used to tailor the maintenance.html file that gets generated. UNTIL should be a time (like

“10pm UTC”) or period (“this evening”, or “tomorrow morning”)—basically any phrase that

can complete the phrase "back by #{time}".

The REASON environment variable may be used to specify the purpose of the downtime. By

default, the word “maintenance” will be used, but any term can be used that will complete

the phrase "down for #{reason}".

So, you can create a customized maintenance screen by typing:

Customized disable_web [shell]

To help get you started using this task, here’s an Apache rewrite condition that looks for

and displays the maintenance.html page, but only if it exists:

Apache rewrite support for disable_web [apache]

1
2
3

To re-enable your application, you can use the enable_web task.

5.7 enable_web
The enable_web task is the reverse of the disable_web task, and makes the same

assumptions about your environment. All it does is delete the maintenance.html file in

#{shared_path}/system. Assuming your Apache rewrite rules are set up right, deleting

that file should be all it takes to unlock your app and let visitors in again.

5.8 invoke
For most things, you’ll want to create tasks to describe the operations you perform on your

servers. However, sometimes there is just a one-off command you want to execute—

updating a single file, or dumping the contents of some file. In those instances, you can use

the invoke task to easily execute some arbitrary command-line on your servers.

To use it, just specify the COMMAND environment variable. To restrict the command to a

specific set of roles, you can set the ROLES environment variable to a comma-delimited list

of role names. (By default, the command will be executed on all roles.) Finally, if you want

the command to be executed via sudo, you can set the SUDO environment variable to

some non-blank value.

Using the invoke task [shell]

5.9 migrate
The migrate task exists to help you run ActiveRecord migrations against your production

database. It assumes that:

your database servers are in the :db role, and

your primary database server has :primary => true associated with it.

The migrate task will only be executed for the :db server with :primary => true.

By default, all this task does is change to the directory of your current release (as indicated

by the current symlink), and run rake RAILS_ENV=production migrate. You can specify

that it should run against the latest release (regardless of what the current release is) by

setting the migrate_target variable to :latest before invoking this task. Likewise, if you

want to specify additional environment variables (beside RAILS_ENV) you can set the

migrate_env variable to the space-delimited list of name=value pairs to use.

(Note that for long-running migrations, or those that lock particularly busy tables, you may

want to run disable_web first to reduce contention for the database.)

5.10 restart
The restart task is used to restart all FastCGI listeners for your application. It simply calls

the reaper command, without arguments, which falls back to the default behavior of

sending the USR2 signal to all active processes for your application. (The

spinner/spawner/reaper setup is described in greater detail in Chapter 3: A More

Complicated Example.)

By default, sudo is used to invoke the reaper. If your reaper is running as your user and

you do not need to use (or have access to) sudo, you can set the :use_sudo variable to

false, so that the reaper is invoked via run instead.

The restart task is only executed on the servers in the :app role.

5.11 rollback
The rollback task will roll your application back to the previously deployed version. It does

this by first calling the update_code task, and then invoking restart to get your FastCGI

listeners looking at the right version.

This task can be a lifesaver. Unless you never make any mistakes, someday you’re bound to

deploy a lemon, and you’ll be grateful on that day that you can easily and cleanly rollback

to your previous version.

(Note that this only rolls back the code—it does not undo any database migrations that

might have been applied by the latest deployment. If you need to rollback database

migrations or other wider-ranging environment changes, you can either write your own

tasks, or run the disable_web task to give you enough time to manually roll the larger

changes back. Not a beautiful solution, but as Capistrano matures, so will its ability to cope

with these larger issues, out of the box.)

5.12 rollback_code
The rollback_code task is primarily used as a single component of the rollback task, but

it may occassionally be useful on its own. All it does determine what the previous release

was (if one exists), update the current symlink to point to that, and then delete the latest

release. It affects all servers.

5.13 setup
The setup task only needs to be run once, at the beginning of your application’s lifecycle

(or any time a new server is added to your production environment). It is non-destructive,

though, and may safely be executed against an existing production system.

It runs against all servers, and sets up the expected directory tree. Specifically, it

Creates the releases_path directory and chmods it to 0775.

Creates the shared_path directory.

Creates the shared_path/system directory and chmods it to 0775.

Creates the shared_path/log directory and chmods it to 0777.

You can define additional setup logic by creating an after_setup task, which will be called

after this task.

5.14 show_tasks
The show_tasks task never does any work on any remote servers. All it does is inspect the

existing tasks and display them to standard out in alphabetical order, along with their

descriptions. This will include both the standard tasks (described here), as well as your own

custom tasks.

The default Rails Rakefile makes it easy to execute this task:

5.15 spinner
The spinner task may be used to start the spinner process for your application (as

described in chapter 3). It assumes that you have a file script/spin in your application,

that describes the process for starting the spinner.

Also, by default the spinner will be started as the app user. If you wish to start it as a

different user, set the :spinner_user variable to something else. (This only works if you

are using sudo to start the spinner. If you can’t use sudo, or don’t want to use sudo, set

the :use_sudo variable to false, and the spinner will always be started as you.)

5.16 symlink
The symlink task simply attempts to update the current symlink to the latest deployed

version of the code. You will almost never need to invoke this task directly, but it is used

internally by other tasks.

5.17 update_code
The standard update_code task will deploy the latest revision of your code to all of your

servers. It also does some tweaking and linking to hook up the new release to shared

directory. Specifically, this task will:

Checkout your source code (according to your selected SCM)

Delete the log and public/system directories in your new release (if they exist)

symlink log to #{shared_path}/log

symlink public/system to #{shared_path}/system

Note that because it deletes the log and public/system directories, you ought not to store

anything in those directories that you want put into the production.

This task is frequently extended with after hooks (by creating an after_update_code task)

to allow you to add application-specific deployment logic. You need to change the

permissions on one of your scripts? Or update your database.yml or environment.rb file

dynamically? The after_update_code task is where you’ll do it.

If update_code is run inside of a transaction and it fails for whatever reason (the checkout

fails, or whatever), the new release will be deleted from the server, leaving your system in

the state it was originally.

 rake remote_exec ACTION=disable_web \
 UNTIL="tomorrow morning" \
 REASON="a vital database ugrade"

 RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f
 RewriteCond %{SCRIPT_FILENAME} !maintenance.html
 RewriteRule ^.*$ /system/maintenance.html [L]

 rake remote_exec ACTION=invoke \
 COMMAND="svn up /u/apps/flipper/current/app/views" \
 ROLES=app

rake show_deploy_tasks

