
Chapters

. 1 Introduction

What is Capistrano?

What can it do?

What assumptions does it
make?

. 2 Quick Start

Getting started

Installing Capistrano

Deployment Recipe

Setup

Apache Configuration

Deploying

Rolling back a release

. 3 A More Complicated Example

Getting started

Deployment Recipe

Spinner

Spawner

Reaper

Deploying

. 4 Recipes

Introduction

Variables

Roles

Tasks

Extending Tasks

. 5 Standard Tasks

Overview

cleanup

cold_deploy

deploy

diff_from_last_deploy

disable_web

enable_web

invoke

migrate

restart

rollback

rollback_code

setup

show_tasks

spinner

symlink

update_code

. 6 Creating Tasks

Overview

run

sudo

put

delete

render

transaction

on_rollback

. 7 Extending Capistrano

Task Libraries

Writing a Task Library

Using a Task Library

Extension Libraries

Options

exports

recent changes

rss 2.0 | atom

Authors

Login Signup

« previous chapter

About Download Documentation Weblog Community Source

7. Extending Capistrano
7.1 Task Libraries
Eventually, you’re going to find yourself with a task or two that you’ve written, that you

want to use in other applications. Or perhaps you showed it to a friend and they wanted to

use it themselves.

Capistrano provides a way of loading “task libraries” that have been installed in the Ruby

load path (such as via rubygems).

7.2 Writing a Task Library
As the author of a task library, you simply write your tasks as you normally would, but then

you wrap them in a block so that Capistrano can load them into the currently executing

configuration:

A task library [ruby]

The :must_exist parameter simply guards against your file being loaded outside of a

Capistrano recipe file. If it is, an exception will be raised indicating that was the case.

Then, you package the file up (let’s call it "custom-tasks.rb") and distribute it, either via

rubygems, or with a “setup.rb”http://i.loveruby.net/en/projects/setup/ file.

7.3 Using a Task Library
Now, you (or your friend, or anybody else) can use that library simply by installing it. In

your deploy.rb, you just require the file like you would any other ruby file:

Using a task library [ruby]

Doing cap show_tasks now ought to list your two custom tasks, along with all the standard

ones.

7.4 Extension Libraries
Sometimes, you’ll write methods that you want multiple tasks to share. The methods

themselves aren’t tasks, they are simply lower-level operations, like the run or put or

delete methods that Capistrano itself provides.

Capistrano allows you to easily distribute and share libraries of these extension methods, as

well as tasks. Simply put your extension methods in a module, register the module with

Capistrano, and then package it up and ship it. People can then use your extension

methods simply by requiring the file, the same as with task libraries.

Sample extension library [ruby]

The last line is where your plugin is registered with Capistrano. You simply give it a name

(:report, in this case) and point it at your new module.

Once a recipe file loads this extension, it can access your report’s display method via

report.display(...), effectively namespacing your extension methods.

Using an extension library [ruby]

 Capistrano.configuration(:must_exist).load do
 task :my_funky_task, :roles => :app do
 ...
 end

 task :another_funky_task do
 ...
 end
 end

 require 'custom-tasks'

require 'capistrano'

module MyReportingMethods
 def display(options={})
 ...
 run(...)
 ...
 put(...)
 ...
 end
end

Capistrano.plugin :report, MyReportingMethods

 require 'my_reporting_methods'

 task :show_general_report do
 report.display
 end

 task :show_app_report, :roles => :app do
 report.display
 end

